If you're seeing this message, it means we're having trouble loading external resources on our website.

Ja lietojat tīmekļa filtru, lūdzu pārliecinieties, ka *.kastatic.org un *.kasandbox.org nav bloķētas.

Galvenais saturs
Šī brīža laiks:0:00Kopējais ilgums:5:42

Video teksts

Mēģināsim saprast, ko nozīmē 8/3 dalīt ar 1/3. Uzzīmēšu skaitļu taisni. Lūk, arī skaitļu taisne. Te ir 0, te būs 1, un te būs 2. Un 3 varētu būt šeit. Tagad atzīmēšu 8/3. Lai to izdarītu, katrs no veselajiem skaitļiem jāsadala trešdaļās. Ķeramies klāt – 1/3, 2/3, 3/3, 4/3, 5/3, 6/3, 7/3 un šeit 8/3. Un 9/3, protams, būs 3. Tātad 8/3 ir šeit. Viens veids, kā saprast, ko nozīmē 8/3 dalīt ar 1/3, ir paskatīties uz šo attālumu un uzdot jautājumu, ar cik lēcieniem var nokļūt līdz 8/3, ja katrs lēciens ir 1/3 liels. Būtībā mēs sadalām šo attālumu. Ja 8/3 sadalām 1/3 lielos lēcienos, cik šādu lēcienu jeb iedaļu sanāktu? Mēģināsim izdomāt. Ja katrs lēciens ir 1/3, tad mums sanāks 1, 2, 3, 4, 5, 6, 7, 8 lēcieni. Tātad šeit būs – iezīmēšu šo ar citu krāsu, ar oranžu – šeit būs 8 lēcieni. Tātad 8/3 dalīts ar 1/3 būs vienāds ar 8. Kāpēc tas tā sanāk? Dalot ar 1/3, katra veselā skaitļa vietā mums tagad ir jāveic 3 lēcieni. Tāpēc, lai nonāktu līdz izvēlētajam skaitlim, lēcienu skaits tagad būs šis izvēlētais skaitlis reiz 3. Tātad par to var domāt arī šādi – 8/3 dalīts ar 1/3 ir tas pats, kas 8/3 reiz 3. Un mēs to varam pierakstīt vai nu šādi – kā reiz 3 –, vai arī kā daļskaitli, jo 3 ir tas pats, kas 3/1. Un sareizināt daļskaitļus mēs jau protam. Sareizinām skaitītājus. 8 reiz 3. Tātad – rakstīšu ar to pašu krāsu – 8 reiz 3 skaitītājā un 3 reiz 1 saucējā – 3 reiz 1 saucējā. Sanāk 24/3, un tas ir tas pats, kas 24 dalīts ar 3, kas savukārt ir vienāds – ir vienāds ar 8. Vai tas darbosies arī tad, ja dalīsim nevis ar 1/3, bet gan ar 2/3? Pamēģināsim 8/3 izdalīt ar 2/3. Dalīts ar 2/3. Arī šoreiz mēs savā ziņā jautājam, ja attālumu no 0 līdz 8/3 sadalām 2/3 lielos lēcienos, cik šādu lēcienu jeb iedaļu sanāktu? Padomāsim. 1 lēciens – atradīsim šim citu krāsu – tātad 1 lēciens – nē, tā ir tā pati krāsa, kas 8/3... 1 lēciens – mans dators kaut ko te uzdarbojas – tātad 1 lēciens,2 lēcieni, 3 lēcieni un 4 lēcieni. Sanāk, ka 8/3 dalīts ar 2/3 ir vienāds ar 4. Vai šajā piemērā darbosies arī reizināšanas paņēmiens? Pamēģināsim arī šeit izdarīt to pašu – ja dalīt ar daļskaitli ir tas pats, kas reizināt ar tā apgriezto skaitli, sareizināsim 8/3 ar 3/2, sareizināsim ar skaitļa 2/3 apgriezto skaitli. Samainām skaitītāju un saucēju vietām un sareizinām ar 3/2. Kas sanāk? Skaitītājā arī šoreiz iegūstam 8 reiz 3, kas ir 24. Un saucējā sanāk 3 reiz 2, kas ir 6. Tātad 24 dalīts ar 6, un tas ir vienāds ar 4. Kāpēc šeit ieguvām uz pusi mazāku skaitli? Padomāsim par to, ko darījām tur un ko – te. Abas izteiksmes ir gandrīz vienādas, tikai šeit mēs neko nedalījām, vai, pareizāk sakot, dalījām ar 1, kamēr te dalījām ar 2. Vai tam ir nozīme? Protams. Jo šeit katrs lēciens bija divreiz lielāks, tāpēc soļu ir divreiz mazāk. Pirmajā piemērā mēs redzējām, kāpēc var reizināt ar 3. Dalot ar daļskaitli, katra veselā skaitļa vietā ir 3 lēcieni. Tāpēc, dalot ar šo daļskaitli, mēs varam reizināt dalāmo ar daļskaitļa saucēju. Savukārt otrajā piemērā skaitītājs ir lielāks par 1, tāpēc šeit katrs lēciens ir divreiz garāks nekā pirmajā piemērā un pašu lēcienu ir divreiz mazāk. Ceru, ka saproti. Iemācīties mehāniski dalīt daļskaitļus ir viegli. 8/3 dalīts ar 1/3 ir tas pats, kas 8/3 reiz 3/1. 8/3 dalīts ar 2/3 ir tas pats, kas 8/3 reiz 3/2. Bet ceru, ka šis video tev palīdz mazliet labāk izprast, kāpēc tā.